甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
选手 |
甲 |
乙 |
丙 |
概率 |
![]() |
![]() |
![]() |
若三人各射击一次,恰有k名选手击中目标的概率记为.
(1) 求X的分布列;(2)若击中目标人数的均值是2,求P的值.
(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足=
=λ∈(0,1).
(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为.
(本题满分14分) 设等差数列{an}的首项a1为a,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知
tan (A+B)=2.
(Ⅰ) 求sin C的值;
(Ⅱ) 当a=1,c=时,求b的值.
已知函数=
,
.
(1)求函数在区间
上的值域T;
(2)是否存在实数,对任意给定的集合T中的元素t,在区间
上总存在两个不同的
,使得
成立.若存在,求出
的取值范围;若不存在,请说明理由;
(3
设数列是有穷等差数列,给出下面数表:
……
第1行
……
第2行
… … …
……
… 第行
上表共有行,其中第1行的
个数为
,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为
.
(1)求证:数列成等比数列;
(2)若,求和
.