在函数,
的图象中,试指出曲线的位置,对称轴、渐近线以及函数的奇偶性、单调性和最大值分别是什么;指出参数
与曲线形状的关系,并运用指数函数的有关性质加以说明.
(本题满分13分) 如图,在四棱锥中,底面
是菱形,
,且侧面
平面
,点
是棱
的中点.
(1)求证:平面
;
(2)求证:;
(3)若,求证:平面
平面
.
(本小题满分13分)已知函数
(1)求的值域和最小正周期;
(2)若对任意,使得
恒成立,求实数
的取值范围.
(本小题满分13分)已知数列满足:
,数列
满足:
,
,数列
的前
项和为
.
(Ⅰ)求证:数列为等比数列;
(Ⅱ)求证:数列为递增数列;
(Ⅲ)若当且仅当时,
取得最小值,求
的取值范围.
设.
(1)令,求
的单调区间;
(2)若当时,
恒成立,求实数
的取值范围;
在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d,且求的面积
.