游客
题文

(本小题满分16分)已知⊙和点.

(Ⅰ)过点向⊙引切线,求直线的方程;
(Ⅱ)求以点为圆心,且被直线截得的弦长为  4的⊙的方程;
(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为Q. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。(1)求a1和a2的值;(2)求数列{an},{bn}的通项an和bn;(3)设cn=an·bn,求数列{cn}的前n项和Tn

已知焦点在X轴的椭圆,焦点为,焦距为,(1)求椭圆方程,(2)若是椭圆上一点,且,求的面积。

制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

等差数列中,前三项分别为,前项和为, (1)、求;(2)、设T=,证明T<1

中,
(Ⅰ)求的值;(Ⅱ)设,求的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号