函数.
(Ⅰ)求的值;
(Ⅱ)求函数的最小正周期及其图象的所有对称轴的方程.
若函数满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(Ⅰ)判断下列函数:①;②
;③
中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数是否为等比源函数,并证明你的结论;
(Ⅲ)证明:,函数
都是等比源函数.
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
已知关于的函数
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若函数没有零点,求实数
取值范围.
如图所示,在四棱锥中,底面四边形
是菱形,
,
是边长为2的等边三角形,
,
.
(Ⅰ)求证:底面
;
(Ⅱ)求直线与平面
所成角的大小;
(Ⅲ)在线段上是否存在一点
,使得
∥平面
?如果存在,求
的值,如果不存在,请说明理由.