游客
题文

我国是水资源比较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的. 某市用水收费的方法是:水费=基本费+超额费+损耗费. 若每月用水量不超过最低限量时,只付基本费8元和每户的定额损耗费c元;若用水量超过时,除了付同上的基本费和损耗费外,超过部分每1m3b元的超额费. 已知每户每月的定额损耗费c不超过5元. 该市某家庭今年一月份、二月份和三月份的用水量和支付的费用如下表所示:
根据表格中的数据,求abc.

月  份
用水量
水 费
一月份
9
9元
二月份
15
19元
三月份
22
33元
科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分分)
在平面直角坐标系xoy中,已知四边形OABC是平行四边形,,点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(II)是否存在实数λ,使?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由。

(本小题满分14分)
中,角的对应边分别为,已知,且
(Ⅰ)求的值;
(Ⅱ)求的值.

在平面直角坐标系xOy中,已知对于任意实数,直线恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为.
(1)求椭圆C的方程;
(2)设(mn)是椭圆C上的任意一点,圆O与椭圆C有4个相异公共点,试分别判断圆O与直线l1mx+ny=1和l2mx+ny=4的位置关系.

如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.
(1)证明:PA⊥平面ABCD;
(2)求以AC为棱,EAC与DAC为面的二面角的大小.

(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号