游客
题文

我国是水资源比较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的. 某市用水收费的方法是:水费=基本费+超额费+损耗费. 若每月用水量不超过最低限量时,只付基本费8元和每户的定额损耗费c元;若用水量超过时,除了付同上的基本费和损耗费外,超过部分每1m3b元的超额费. 已知每户每月的定额损耗费c不超过5元. 该市某家庭今年一月份、二月份和三月份的用水量和支付的费用如下表所示:
根据表格中的数据,求abc.

月  份
用水量
水 费
一月份
9
9元
二月份
15
19元
三月份
22
33元
科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标;
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

若函数.当时,函数取得极值
(1)求函数的解析式;
(2)若函数有3个解,求实数的取值范围.

已知函数
(1)当时,证明:对
(2)若,且存在单调递减区间,求的取值范围;
(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

如图,已知抛物线的焦点在抛物线上.

(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

如图,是半圆的直径,是半圆上除外的一个动点,平面,

⑴证明:平面平面
⑵试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号