(本小题满分13分)设椭圆
的左右焦点分别为
,离心率
,过
分别作直线
,且
,
分别交直线
:
于
两点。
(Ⅰ)若,求 椭圆的方程;
(Ⅱ)当取最小值时,试探究
与
的关系,并证明之.
已知二次函数的图像经过坐标原点,其导函数为
,数列
的前n项和为
,点
均在函数
的图像上。
(Ⅰ)、求数列的通项公式;
(Ⅱ)、设,
是数列
的前n项和,求使得
对所有
都成立的最小正整数m;
已知上是减函数,且
。
(1)求的值,并求出
和
的取值范围。
(2)求证。
(3)求的取值范围,并写出当
取最小值时的
的解析式。
设a>0且a≠1, (x≥1)
(Ⅰ)求函数f(x)的反函数f-1(x)及其定义域;
(Ⅱ)若,求a的取值范围。
设函数,已知
是奇函数。
(Ⅰ)求、
的值。
(Ⅱ)求的单调区间与极值。
对于定义域为的函数
,如果同时满足以下三条:①对任意的
,总有
;②
;③若
,都有
成立,则称函数
为理想函数.
(1) 若函数为理想函数,求
的值;
(2)判断函数是否为理想函数,并予以证明;
(3) 若函数为理想函数,
假定
,使得
,且
,求证:
.