(本小题满分12分)已知向量=(sin(
+x),
cosx),
=(sinx,cosx), f(x)=
·
.
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=,求角A的值.
已知函数在
上是减函数,在
上是增函数,函数
在
上有三个零点,且
是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且
的解集为
,求实数
的取值范围.
已知椭圆的短半轴长为
,动点
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线
截得的弦长为
的圆的方程;
(3)设是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段的长为定值,并求出这个定值.
(本小题满分12分)如图,三棱柱中,侧棱
平面
,
为等腰直角三角形,
,且
分别是
的中点.
(1)求证:平面
;
(2)求证:平面
;
(3)设,求三棱锥
的体积.
设数列的前
项和为
,且
,其中
是不为零的常数.
(1)证明:数列是等比数列;
(2)当时,数列
满足
,
,求数列
的通项公式.
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
评估的平均得分 |
![]() |
![]() |
![]() |
全市的总体交通状况等级 |
不合格 |
合格 |
优秀 |
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这条道路中抽取
条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过
的概率.