(本小题满分12分)已知向量=(sin(
+x),
cosx),
=(sinx,cosx), f(x)=
·
.
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=,求角A的值.
(本小题满分12分)
如图,四边形为矩形,
平面
,
,
平面
于点
,且点
在
上.
(Ⅰ)求证:;
(Ⅱ)求四棱锥的体积;
(Ⅲ)设点在线段
上,且
,
试在线段上确定一点
,使得
平面
.
(本小题满分12分)
设同时满足条件:①;②
(
,
是与
无关的常数)的无穷数列
叫“嘉文”数列.已知数列
的前
项和
满足:
(
为常数,且
,
).
(Ⅰ)求的通项公式;
(Ⅱ)设,若数列
为等比数列,求
的值,并证明此时
为“嘉文”数列.
(本小题满分12分)
已知函数,
,将函数
向左平移
个单位后得函数
,设三角形
三个角
、
、
的对边分别为
、
、
.
(Ⅰ)若,
,
,求
、
的值;
(Ⅱ)若且
,
,求
的取值范围.
(本小题满分12分)
已知关于的一元二次函数
(Ⅰ)设集合和
,分别从集合
和
中随
机取一个数作为
和
,求函数
在区间[
上是增函数的概率;
(Ⅱ)设点是区域
内的随机点,
记有两个零点,其中一个大于
,另一个小于
,求事件
发生的概率.
.(本小题满分14分)
已知函数
(I)当时,
与
在定义域上的单调性相反,求b的取值范围;
(II)设是函数
的
两个零点,且
求证