游客
题文

如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点轴的正半轴上运动,的面积为.

(Ⅰ)求线段中点的轨迹的方程;
(Ⅱ)是曲线上的动点, 轴的距离之和为,
轴的距离之积.问:是否存在最大的常数,
使恒成立?若存在,求出这个的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 平面解析几何的产生──数与形的结合
登录免费查看答案和解析
相关试题

已知A(1,4),抛物线y2=16x的内接△ABC的重心恰好为抛物线的焦点,求直线BC的方程.

已知抛物线y2=-8mx(m>0),是否存在过抛物线的焦点F的弦PQ,使△POQ的面积最大或最小?若存在,求出PQ所在直线的倾斜角;若不存在,请说明理由.

若抛物线y2=2px(p>0)上一点M到准线及对称轴的距离分别为10和6,求M点的横坐标及抛物线方程.

已知顶点在原点,焦点在y轴上的抛物线C截直线y=2x-1所得的弦长为210.求抛物线C的方程.

抛物线y2=2px(p>0)上点M到定点A(3,2)和焦点F的距离之和的最小值为5,求此抛物线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号