已知实数,曲线
与直线
的交点为
(异于原点
),在曲线
上取一点
,过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,接着过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,如此下去,可以得到点
,
,…,
,… . 设点
的坐标为
,
.
(Ⅰ)试用表示
,并证明
;
(Ⅱ)试证明,且
(
);
(Ⅲ)当时,求证:
(
).
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的标准方程;
(2)设直线与圆相交于
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数,使得弦
的垂直平分线
过点
.
(本小题16分)四棱锥中,底面
是边长为8的菱形,
,若
,平面
⊥平面
.
(1)求四棱锥的体积;
(2)求证:⊥
.
已知圆心
(Ⅰ)写出圆C的标准方程;
(Ⅱ)过点作圆C的切线,求切线的方程及切线的长.
(本小题满分14分)如图,在五面体ABC—DEF中,四边形BCFE 是矩形,DE 平面BCFE.
求证:(1)BC 平面ABED;
(2)CF // AD.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.