游客
题文

如图所示,某动物园要为刚入园的小老虎建造一间两面靠墙的三角形露天活动室,已知已有两面墙的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,问当为多少时,所建造的三角形露天活动室的面积最大?

科目 数学   题型 解答题   难度 较难
知识点: 三角形的面积公式
登录免费查看答案和解析
相关试题

(本题15分)已知函数.
(I)若函数在点处的切线斜率为4,求实数的值;
(II)若函数在区间上存在零点,求实数的取值。

已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面
   成角的正切值.

已知数列是首项为1公差为正的等差数列,数列是首项为1的等比数列,设,且数列的前三项依次为1,4,12,
(1)求数列的通项公式;
(2)若等差数列的前n项和为Sn,求数列的前项的和Tn

在△ABC中,a,b,c分别为角A、B、C的对边,
(1)求A的最大值;(2)当角A最大时,求a.

如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 P F 2 与椭圆的交点分别为 A , B C , D O 为坐标原点.

image.png


(I)求椭圆的标准方程;
(II)设直线 P F 1 P F 2 的斜线分别为 k 1 , k 2 .
(i)证明: 1 k 1 - 3 k 2 = 2
(ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号