已知圆C:
,过定点P(0 , 1)作斜率为1的直线交圆C于A、B两点,P为线段AB的中点.
(Ⅰ)求
的值;
(Ⅱ)设E为圆C上异于A、B的一点,求△ABE面积的最大值;
(Ⅲ)从圆外一点M向圆C引一条切线,切点为N,且有|MN|="|MP|" , 求|MN|的最小值,并求|MN|取最小值时点M的坐标.
设
是奇函数(
),
(1)求出
的值
(2)若
的定义域为[
](
),判断
在定义域上的增减性,并加以证明;
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为
个时,零件的实际出厂单价为P元,写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个时,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
探究函数
的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.
| x |
… |
0.25 |
0.5 |
0.75 |
1 |
1.1 |
1.2 |
1.5 |
2 |
3 |
5 |
… |
| y |
… |
8.063 |
4.25 |
3.229 |
3 |
3.028 |
3.081 |
3.583 |
5 |
9.667 |
25.4 |
… |
已知:函数
在区间(0,1)上递减,问:
(1)函数
在区间上递增.当
时,
;
(2)函数
在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)
已知
是定义在R上的偶函数,当
时,
(1)求
的值;
⑵求
的解析式并画出简图;
⑶讨论方程
的根的情况。(只需写出结果,不要解答过程).
已知
, 
(1)设集合
,请用列举法表示集合B;
(2)求
和
.