已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.(Ⅰ)求证:AF⊥平面FBC;(Ⅱ)求证:OM∥平面DAF;(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE 的值.
已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD. ⑴求证:AB⊥AC; ⑵求点D与向量的坐标.
已知函数的最大值为,最小值为. (1)求的值; (2)求函数的最小值并求出对应x的集合.
已知:、、是同一平面内的三个向量,其中=(1,2) (1)若| |,且,求的坐标; (2)若| |=且与垂直,求与的夹角.
已知向量,,与、的夹角相等,且,求向量的坐标.
证明: .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号