某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m.
图1-7-8
(1)建立坐标系并写出该曲线的方程;
(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).
(本小题满分13分)
已知函数.
(Ⅰ)若点在角
的终边上,求
的值;
(Ⅱ)若,求
的值域.
已知函数(
,
,
为常数,
).
(Ⅰ)若时,数列
满足条件:点
在函数
的图象上,求
的前
项和
;
(Ⅱ)在(Ⅰ)的条件下,若,
,
(
),
证明:;
(Ⅲ)若时,
是奇函数,
,数列
满足
,
,
求证:.
设椭圆:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
,若过
,
,
三点的圆恰好与直线
:
相切. 过定点
的直线
与椭圆
交于
,
两点(点
在点
,
之间).
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线的斜率
,在
轴上是否存在点
,使得以
,
为邻边的平行四边形是菱形. 如果存在,求出
的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数满足
,求
的取值范围.
已知函数
(为实数,
,
),
(Ⅰ)若,且函数
的值域为
,求
的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,
是单调函数,求实数
的取值范围;
(Ⅲ)设,
,
,且函数
为偶函数,判断
是
否大于?
已知函数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,讨论
的单调性.