已知点
.
(Ⅰ)若
,求
和
的值
(Ⅱ)若
,其中
为坐标原点,求
的值.
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点P(4,0)且不垂直于x轴直线
与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求
的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点. 
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
已知数列
的前
项和为
,且
,数列
满足
,且点
在直线
上.
(1)求数列
、
的通项公式;
(2)求数列
的前
项和
.
已知△ABC中,A,B,C的对边分别为a,b,c,且
.
(1)若
,求边c的大小;
(2)若a=2c,求△ABC的面积.
已知函数
(I)当a=1时,求函数f(x)的最小值;
(II)当a≤0时,讨论函数f(x)的单调性;
(III)是否存在实数a,对任意的x1,x2
(0,+∞),且x1≠x2,都有
恒成立.若存在,求出a的取值范围;若不存在,说明理由.