已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|=,试求椭圆的方程
在正方体中,、为棱、的中点. (1)求证:∥平面; (2)求证:平面⊥平面
直线l经过点,且和圆C:相交,截得弦长为,求l的方程.
已知函数f(2x) (I)用定义证明函数在上为减函数。 (II)求在上的最小值.
求经过直线:与直线:的交点,且满足下列条件的直线方程 (1)与直线平行 ; (2)与直线垂直 。
如图,椭圆经过点,其左、右顶点分别是、,左、右焦点分别是、,(异于、)是椭圆上的动点,连接交直线于、两点,若成等比数列. (Ⅰ)求此椭圆的离心率; (Ⅱ)求证:以线段为直径的圆过点.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号