(本小题满分12分)
已知数列和等比数列
,
的前n项和为
,
,
且满足,
;
(1)求数列的通项公式
和等比数列
的通项公式
;
(2)求数列的前n项和
与等比数列
的前n项和
。
已知等差数列的前三项依次为
、4、
,前
项和为
,且
.
(1)求及
的值;
(2)设数列的通项
,证明数列
是等差数列,并求其前
项和
.
已知二次函数.
(1)若对任意、
,且
,都有
,求证:关于
的方程
有两个不相等的实数根且必有一个根属于
;
(2)若关于的方程
在
上的根为
,且
,设函数
的图象的对称轴方程为
,求证:
.
设函数.
(1)若,
对一切
恒成立,求
的最大值;
(2)设,且
、
是曲线
上任意两点,若对任意
,直线
的斜率恒大于常数
,求
的取值范围.
如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,
为半圆的圆心,
,
,现要将此铁皮剪出一个等腰三角形
,其底边
.
(1)设,求三角形铁皮
的面积;
(2)求剪下的铁皮三角形的面积的最大值.
已知函数,
,
.
(1)求证:函数在
上单调递增;
(2)若函数有四个零点,求
的取值范围.