已知函数的定义域为R,且满足以下条件:1对任意的
,有
;2对任意
有
;3
(Ⅰ)求的值;
(Ⅱ)判断 的单调性,并说明理由;
(Ⅲ)若 且a,b,c成等比数列,求证:
.
(本小题13分)已知:一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.
(1)求圆柱的侧面积;
(2)x为何值时,圆柱的侧面积最大。
(本小题13分)已知,
(
).若
是
的充分条件,求
的取值范围.
设函数,
(1)若不等式在
内恒成立,求
的取值范围;
(2)判断是否存在大于1的实数,使得对任意
,都有
满足等式:
,且满足该等式的常数
的取值唯一?若存在,求出所有符合条件的
的值;若不存在,请说明理由.
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间
(单位:小时)之间近似满足如图所示的曲线,
(1)写出第一次服药后与
之间的函数关系式;
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到
,参考数据:
)
已知函数有最大值
,求实数
的值.