已知定义在R上的函数,对于任意实数x,y都满足
,且当
试判断函数的奇偶性与单调性,证明你的结论.
(本小题满分12分).
如图是某直三棱柱被削去上底后所得几何体的直观图、左视图、俯视图,在直观图中,M是
BD的中点,左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求该几何体的体积;(Ⅱ)求证:EM∥平面ABC;
(本小题满分12分)
某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用
品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X |
1 |
2 |
3 |
4 |
5 |
频率 |
a |
0.2 |
0.4 |
b |
c |
(I)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,
求a,b,c的值;
(Ⅱ)在(I)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件
日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出
的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率
(本小题满分12分)
在中,
.
(I)求角的大小;
(II)若,
,求
.
(本小题满分14分)
已知函数,(a>0,且a≠1).(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由;(3)设,解不等式f(x)>0.
(本小题满分13分)
已知函数,且
(1)若函数是偶函数,求
的解析式;
(2)在(1)的条件下,求函数在区间
上的最大值和最小值。
(3)要使函数在区间
上单调递增,求
的取值范围.