如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②
③
求点G的横坐标的取值范围.
已知函数.
(1)解不等式;
(2)若,且
,求证:
.
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且.求证:(1)D、E、C、F四点共圆;(2)
.
已知函数,
,函数
的图像在点
处的切线平行于
轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数
的图象交于两点
,(
),证明:
.
如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(1)求抛物线的方程;
(2)当的角平分线垂直
轴时,求直线
的斜率;
(3)若直线在
轴上的截距为
,求
的最小值.
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;