在平面直角坐标系内有两个定点和动点P,
坐标分别为
、
,动点
满足
,动点
的轨迹为曲线
,曲线
关于直线
的对称曲线为曲线
,直线
与曲线
交于A、B两点,O是坐标原点,△ABO的面积为
,
(1)求曲线C的方程;(2)求的值。
(本小题满分12分)如图,在四棱锥中,平面
平面
,
∥
,已知
(1)设是
上的一点,求证:平面
平面
;
(2)当三角形为正三角形时,点
在线段
(不含线段端点)上的什么位置时,二面角
的大小为
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
(本小题满分10分)己知圆的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)将圆的参数方程化为普通方程,将圆
的极坐标方程化为直角坐标方程;
(2)圆,
是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
(本小题满分12分)已知数列中,
.
(1)求证:是等比数列,并求
的通项公式
;
(2)数列满足
,数列
的前
项和为
,若不等式
对一切
恒成立,求
的取值范围.
(本小题满分12分)设函数.
(Ⅰ)当时,求
的值域;
(Ⅱ)已知中,角
的对边分别为
,若
,
,求
面积的最大值.