。直线l2与函数
的图象以及直线l1、l2与函数
的图象
围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为
(1)求函数的解析式;
(2)若函数,判断
是否存在极值,若存在,求出极值,若不存在,说明理由;
已知椭圆的离心率为
,右焦点为
,过原点
的直线
交椭圆于
两点,线段
的垂直平分线交椭圆
于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:为定值,并求
面积的最小值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
(本小题满分12分)如图,四边形是正方形,△
与△
均是以
为直角顶点的等腰直角三角形,点
是
的中点,点
是边
上的任意一点.
(1)求证:;
(2)求二面角的平面角的正弦值.
已知向量,
,函数
(1)求函数的最小正周期和单调递减区间;
(2)在中,
分别是角
的对边,且
,
,
,且
,求
的值.
选修4—5: 不等式选讲.
(Ⅰ)设函数.证明:
;
(Ⅱ)若实数满足
,求证: