游客
题文

(文科做)已知函数(bc为常数).
(1) 若处取得极值,试求的值;
(2) 若上单调递增,且在上单调递减,又满足,求证:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数,其中为实数.
(1)当时,求曲线在点处的切线方程;
(2)是否存在实数,使得对任意恒成立?若不存在,请说明理由,若存在,求出的值并加以证明.

如图,线段y轴上一点所在直线的斜率为,两端点y轴的距离之差为.
(Ⅰ)求出以y轴为对称轴,过三点的抛物线方程;
(Ⅱ)过抛物线的焦点作动弦,过两点分别作抛物线的切线,设其交点为,求点的轨迹方程,并求出的值.

如图,已知棱柱的底面是菱形,且为棱的中点,为线段的中点,

(Ⅰ)求证:
(Ⅱ)判断直线与平面的位置关系,并证明你的结论;
(Ⅲ)求三棱锥的体积.

某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:

(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”

下面临界值表仅供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

(参考公式:其中

已知向量,设函数.
(1)求的最小正周期与单调递增区间.(2)在中,分别是角的对边,若的面积为,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号