游客
题文

给出定义在(0,+∞)上的三个函数:,已知在x=1处取极值.
(Ⅰ)确定函数h(x)的单调性;
(Ⅱ)求证:当时,恒有成立;
(Ⅲ)把函数h(x)的图象向上平移6个单位得到函数h1(x)的图象,试确定函数yg(x)-h1(x)的零点个数,并说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

求证:(用两种方法证明).

用三段论证明:通项为为常数)的数列是等差数列.

(本题满分15分)已知a∈R,函数f (x) =x3 + ax2 + 2ax (x∈R).(Ⅰ)当a = 1时,求函数f (x)的单调递增区间;(Ⅱ)函数f (x) 能否在R上单调递减,若是,求出a的取值范围;若不能,请说明理由;(Ⅲ)若函数f (x)在[-1,1]上单调递增,求a的取值范围.

(本小题满分14分)
已知函数对于任意),都有式子成立(其中为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令,…,,…
在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;
(ⅲ)当时,若,求数列的通项公式.

如图所示,已知圆,定点为圆上一动点,点上,点上,且满足,点的轨迹为曲线

(Ⅰ) 求曲线的方程;
(Ⅱ) 若点在曲线上,线段的垂直平分线为直线,且成等差数列,求的值,并证明直线过定点;
(Ⅲ)若过定点(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号