为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
如图,在四棱锥 中,底面 是矩形, 平面 , , 分别是 的中点.
(1)证明: 平面
(2)求平面 与平面 夹角的大小
已知
是公差不为零的等差数列,
且
成等比数列
(1)求数列
的通项公式
(2)求数列的前n项和
数列 中, , 是函数 的极小值点.
(Ⅰ)当
时,求通项
;
(Ⅱ)是否存在
,使数列
是等比数列?若存在,求
的取值范围;若不存在,请说明理由.
已知函数
,对任意的
,恒有
.
(Ⅰ)证明:当
时,
;
(Ⅱ)若对满足题设条件的任意
,不等式
恒成立,求
的最小值.