数列 a n ( n ∈ N * ) 中, a 1 = a , a n + 1 是函数 f n ( x ) = 1 3 x 3 - 1 2 ( 3 a n + n 2 ) x 2 + 3 n 2 a n x 的极小值点.
(Ⅰ)当 a = 0 时,求通项 a n ; (Ⅱ)是否存在 a ,使数列 a n 是等比数列?若存在,求 a 的取值范围;若不存在,请说明理由.
已知函数且. (1)求的值; (2)判断在上的单调性,并给予证明.
已知集合,. (1)求集合; (2)若,求实数的取值范围.
已知集合A={-4,2-1,},B={-5,1-,9},分别求适合下列条件的的值. (1); (2).
已知函数在[0,+∞)上是减函数,试比较与的大小.
已知为函数图象上一点,为坐标原点,记直线的斜率. (1)若函数在区间上存在极值,求实数的取值范围; (2)当时,不等式恒成立,求实数的取值范围; (3)求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号