已知函数
,其中
为实数.
(1)当
时,求曲线
在点
处的切线方程;
(2)是否存在实数
,使得对任意
,
恒成立?若不存在,请说明理由,若存在,求出
的值并加以证明.
已知等比数列
中,
,前
项和是前
项中所有偶数项和的
倍.
(1)求通项
;
(2)已知
满足
,若
是递增数列,求实数
的取值范围.
已知箱子里装有4张大小、形状都相同的卡片,标号分别为1,2,3,4.
(1)从箱子中任取两张卡片,求两张卡片的标号之和不小于5的概率;
(2)从箱子中任意取出一张卡片,记下它的标号
,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的标号
,求使得幂函数
图像关于
轴对称的概率.
已知
(1)最小正周期及对称轴方程;
(2)已知锐角
的内角
的对边分别为
,且
,
,求
边上的高的最大值.
设
,曲线
在点
处的切线与直线
垂直.
(1)求
的值;
(2)若对于任意的
,
恒成立,求
的范围;
(3)求证:
如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.