一束光线从点出发,经直线
上一点
反射后,恰好穿过点
.(Ⅰ)求点
关于直线
的对称点
的坐标;
(Ⅱ)求以、
为焦点且过点
的椭圆
的方程;
(Ⅲ)设直线与椭圆
的两条准线分别交于
、
两点,点
为线段
上的动点,求点
到
的距离与到椭圆
右准线的距离之比的最小值,并求取得最小值时点
的坐标.
四面体
及其三视图如图所示,平行于棱
的平面分别交四面体的棱
于点
.
(1)求四面体
的体积;
(2)证明:四边形
是矩形.
的内角
所对的边分别为
.
(1)若
成等差数列,证明:
;
(2)若
成等比数列,且
,求
的值.
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点).点
在椭圆
上,且
,直线
与
轴、
轴分别交于
两点.
(i)设直线
的斜率分别为
,证明存在常数
使得
,并求出
的值;
(ii)求
面积的最大值.
设函数 其中 为常数,
(1)若 ,求曲线 处的切线方程;
(2)讨论函数的单调性.
在等差数列
中,已知公差
,
是
与
的等比中项.
(1)求数列
的通项公式;
(2)设
,记
,求
.