如图,已知四棱锥,底面
是等腰梯形,且
∥
,
是
中点,
平面
,
,
是
中点.
(1)证明:平面平面
;(2)求点
到平面
的距离.
如图,四棱锥
中,底面
为矩形,
,
为
的中点.
(1)证明:
;
(2)设二面角
为60°,
,
,求三棱锥
的体积.
已知数列
满足
(1)证明
是等比数列,并求
的通项公式;
(2)证明:
.
设函数
,记
的解集为
,
的解集为
.
(1)求
;
(2)当
时,证明:
.
将圆
上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线
.
(1)写出
的参数方程;
(2)设直线
与
的交点为
,以坐标原点为极点,
轴正半轴为极坐标建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
如图,
交圆于
、
两点,
切圆于
为
上一点且
,连接
并延长交圆于点
,作弦
垂直
,垂足为
.
(1)求证:
为圆的直径;
(2)若
,求证:
.