如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求的大小(用反三角函数表示);
(Ⅱ)设
①
②OA与平面SBC的夹角(用反三角函数表示);
③O到平面SBC的距离.
(Ⅲ)设
① .
②异面直线SC、OB的距离为 .
(注:(Ⅲ)只要求写出答案).
选修4-1:几何证明选讲
如图, 是 的直径, 是 的切线, 交 于 .
(Ⅰ)若 为 的中点,证明: 是 的切线;
(Ⅱ)若 ,求 的大小.
已知函数
.
(Ⅰ)当
为何值时,
轴为曲线
的切线;
(Ⅱ)用
表示
中的最小值,设函数
,讨论
)零点的个数.
在直角坐标系
中,曲线
与直线
交与
两点,
(Ⅰ)当
时,分别求
在点
和
处的切线方程;
(Ⅱ)
轴上是否存在点
,使得当
变动时,总有
?说明理由.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中,
=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
如图,四边形
为菱形,
=120°,
是平面
同一侧的两点,
⊥平面
,
⊥平面
,
,
.
(Ⅰ)证明:平面
⊥平面
;
(Ⅱ)求直线
与直线
所成角的余弦值.