一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记
;出现“×”,则记
,令
(I)当
时,记
,求
的分布列及数学期望;
(II)当
时,求
的概率.
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
某种海洋生物身体的长度
(单位:米)与生长年限t(单位:年)
满足如下的函数关系:
.(设该生物出生时t=0)
(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第
年,该生物长得最快,求
的值.
已知函数
.
(1)若
,求实数x的取值范围;
(2)求
的最大值.
在△ABC中,BC=a,AC=b,a、b是方程
的两个根,且
,求△ABC的面积及AB的长.
已知函数
过点
.
(1)求实数
;
(2)将函数
的图像向下平移1个单位,再向右平移
个单位后得到函数
图像,设函数
关于
轴对称的函数为
,试求
的解析式;
(3)对于定义在
上的函数
,若在其定义域内,不等式
恒成立,求实数
的取值范围.