游客
题文

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

等差数列的前项之和为,且
.
(1)求数列的通项公式;
(2)求数列的通项公式;
(3)求证:

中,分别是角的对边,
.
(1)求边长;
(2)设中点为,求中线长.

已知椭圆:的右焦点与抛物线的焦点相同,且的离心率,又为椭圆的左右顶点,其上任一点(异于).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交直线于点,过作直线的垂线交轴于点,求的坐标;
(Ⅲ)求点在直线上射影的轨迹方程.

已知函数(x≠0),各项均为正数的数列,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)在数列中,对任意的正整数, 都成立,设为数列的前项和试比较的大小.

若定义在上的函数同时满足以下条件:
上是减函数,在上是增函数; ②是偶函数;
处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在,使,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号