如图1,在直角梯形
中,
,
,
,
为线段
的中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(Ⅰ) 求证:
平面
;
(Ⅱ) 求二面角
的余弦值.

甲﹑乙两人玩一种游戏,每次有甲﹑乙两人各出1到5根手指,若和为偶数则甲赢,否则乙赢.
(1)若以A表示和为6的事件,求P(A)
(2)这种游戏公平吗?试说明理由.
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若﹁p是﹁q的充分而不必要条件,求实数m的取值范围.
用秦九韶算法求多项式
,当x=2时的值.
过曲线
上的一点
作曲线的切线,交x轴于点P1,过P1作垂直于x轴的直线交曲线于Q1,过Q1作曲线的切线,交x轴于点P2;过P2作垂直于x轴的直线交曲线于Q2,过Q2作曲线的切线
,交x轴于点P3;……如此继续下去得到点列:
设
的横坐标为
(I)试用n表示
;
(II)证明:
(III)证明:
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C
于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理
由.