已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
⑴求f(x)的解析式;
⑵求函数g(x)=f(x2)的单调递增区间.
选修4—5:不等式选讲。设函数
(1)求不等式的解集;
(2)若不等式(
,
,
)恒成立,求实数
的范围.
选修4—4:坐标系与参数方程。在极坐标系中,如果为等边三角形ABC的两个顶点,求顶点C的极坐标.(
)
选修4—1:几何证明选讲。如图,PA切圆O于点A,割线PBC经过圆心O,
OB=PB=1,OA绕点O逆时针旋转到OD.
(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
设函数
(1)已知x=1是函数f(x)的极值点,求p的值;
(2)求函数的极值点;
(3)当时,若对任意的x>0,恒有
,求
的取值范围.
已知椭圆方程为,斜率为
的直线
过椭圆的上焦点且与椭圆相交于
,
两点,线段
的垂直平分线与
轴相交于点
.
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.