对于函数,若存在实数,使成立,则称为的不动点.(1)当时,求的不动点;(2)若对于任何实数,函数恒有两相异的不动点,求实数的取值范围;(3)在(2)的条件下,若的图象上、两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的最小值.
设等差数列的前项和为.且 (1)求数列的通项公式; (2)数列满足:,,求数列的前项和.
如图,在四棱锥中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)点在线段上,,试确定的值,使平面.
在中,角的对边分别为,且. (1)求的值; (2)若,且,求和的值.
设. (1)若,求最大值; (2)已知正数,满足.求证:; (3)已知,正数满足.证明:.
已知椭圆:()的右焦点,右顶点,右准线且. (1)求椭圆的标准方程; (2)动直线:与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号