已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,
D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥
P—ABC所成两部分的体积比.
(本小题满分分)
(Ⅰ)若是公差不为零的等差数列
的前n项和,且
成等比数列,求数列
的公比;
(II)设是公比不相等的两个等比数列,
,证明数列
不是等比数列。
(本小题满分分)
在平面直角坐标系xoy中,已知四边形OABC是平行四边形,,点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(II)是否存在实数λ,使?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由。
(本小题满分14分)
在中,角
的对应边分别为
,已知
,
,且
.
(Ⅰ)求的值;
(Ⅱ)求的值.
在平面直角坐标系xOy中,已知对于任意实数,直线
恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为
.
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.
(1)证明:PA⊥平面ABCD;
(2)求以AC为棱,EAC与DAC为面的二面角的大小.