如图,直角梯形ABCE中,,D是CE的中点,点M和点N在
ADE绕AD向上翻折的过程中,分别以
的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
。
(1) 求直线AE与平面CDE所成的角;
(2) 求证:MN//平面CDE。
如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.
(1) 求证:;
(2) 若,试求
的大小.
如图,在直三棱柱中,
,
是棱
上的动点,
是
中点,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)若二面角的大小是
,求
的长.
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示.
(I)求该班学生参加活动的人均次数;
(II)从该班中任意选两名学生,求他们参加活动
次数恰好相等的概率;
(III)从该班中任选两名学生,用表示这两人参
加活动次数之差的绝对值,求随机变量的分布列及数学期望
.(要求:答案用最简分数表示)学
(本小题满分12分)在中,
分别为角
的对边,且满足
(Ⅰ)求角的大小;
(Ⅱ)若,求
的最小值.
若函数f(x)=在[1,+∞
上为增函数.
(Ⅰ)求正实数a的取值范围.
(Ⅱ)若a=1,求征:(n∈N*且n ≥ 2 )