如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=
,D是A1C的中点E是侧棱BB1上的一动点。
(1)当E是BB1的中点时,证明:DE//平面A1B1C1;
(2)求的值
(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。
(本小题满分12分)已知定义在实数集上的奇函数
有最小正周期2,且当
时,
(Ⅰ)求函数在
上的解析式;(Ⅱ)判断
在
上的单调性;
(Ⅲ)当取何值时,方程
在
上有实数解?
(本小题满分8分)已知平面向量a,b
(Ⅰ)若存在实数,满足x
a
b,y
a
b且x⊥y,求出
关于
的关系式
;
(Ⅱ)根据(Ⅰ)的结论,试求出函数在
上的最小值.
(本小题满分8分)设函数的图象在
处的切线方程为
.
(Ⅰ)求,
;
(Ⅱ)若函数在处取得极值
,试求函数解析式并确定函数的单调区间.
(本小题满分8分)
已知是一个公差大于0的等差数列,且满足
.
(Ⅰ)求数列的通项公式:
(Ⅱ)等比数列满足:
,若数列
,求数列
的前n项和
.
(本小题满分8分)在中,
分别为内角
的对边,且
(Ⅰ)求的大小;
(Ⅱ)若,试求内角B、C的大小.