如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面
的距离。
(本题满分13分)已知数列中
,点
在函数
的图
像上
,(1)求
,(2)若
,求
.
(本题满分13分)已知函数
(1)当时,求函数的单调递增区间;(2)当
时,函数
的值域是
,求
的值
(本题满分12分).如图:平面平面
,
是正方形,
矩形,且
,
是
的中点。
(1)求证平面平面
;(2)求四面体
的体积。
(本题满分12分)中心在原点的椭圆与抛物线有一个公共焦点,且其离心率是双曲线
的离心率的倒数,
(1)求椭圆方程。(2)若(1,)是直线
被椭圆截得的线段的中点,求直线
的方程。
(本题满分12分)已知点M在X轴上,点N在Y轴上,且,点P为线段MN的中点。
(1) 求点P的轨迹方程。
(2)若直线与上述轨迹交于A.B两点,且
,求:
的值。