如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=,
D是A1B1中点.
(1)求证C1D⊥平面A1B;
(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
(本小题满分10分 )选修4—5:不等式选讲
已知,且关于
的不等式
的解集为
.
(Ⅰ)求的值;
(Ⅱ)若,
均为正实数,且满足
,求
的最小值.
(本小题满分10分 )选修4—4:坐标系与参数方程
在直角坐标系中,直线
的参数方程为
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系下,圆
的方程为
.
(Ⅰ)求直线的普通方程和圆
的圆心的极坐标;
(Ⅱ)设直线和圆
的交点为
、
,求弦
的长.
(本小题满分10分 )选修4—1:几何证明选讲
如图,为⊙
的直径,直线
与⊙
相切于点
,
垂直
于点
,
垂直
于点
,
垂直
于点
,连接
,
.
证明:(Ⅰ);
(Ⅱ).
(本小题满分12分)已知函数.
(I)讨论函数的单调区间;
(II)当时,若函数
在区间
上的最大值为
,求
的取值范围.
(本小题满分12分)在平面直角坐标系中,已知圆心在
轴上,半径为4的圆
位于
轴右侧,且与
轴相切.
(I)求圆的方程;
(II)若椭圆的离心率为
,且左右焦点为
.试探究在圆
上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).