(本小题满分13分)已知直四棱柱ABCD—A1B1C1D1的
底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,
M为线段AC1的中点. (1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与与平面ABCD所成二面角的大小.
(本小题满分13分)已知△ABC的周长为6,成等比数列,求
(1)△ABC的面积S的最大值;
(2)的取值范围。
已知,其中0<
<2,
(1) 解不等式。(2)若x>1时,不等式恒成立,求实数m的范围。
(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立
(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(II)设,求数列
的前n项和Bn;
如图,要计算西湖岸边两景点与
的距离,由于地形的限制,需要在岸上选取
和
两点,现测得
,
,
,
,
,求两景点
与
的距离(精确到0.1km).参考数据:
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=-6,S6=-30.求数列{an}的前n项和的最小值.