(本小题满分12分)设圆过点P(0,2), 且在
轴上截得的弦RG的长为4.(Ⅰ)求圆心
的轨迹E的方程;(Ⅱ)过点
(0,1),作轨迹
的两条互相垂直的弦
,
,
设、
的中点分别为
,
,试判断直线
是否过定点?并说明理由.
在直角坐标系
中,曲线
的参数方程为
为参数
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)当 时, 是什么曲线?
(2)当 时,求 与 的公共点的直角坐标.
已知函数 .
(1)当 a=1时,讨论 f( x)的单调性;
(2)当 x≥0时, f( x)≥ x 3+1,求 a的取值范围.
已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为 ,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
如图, 为圆锥的顶点, 是圆锥底面的圆心, 为底面直径, . 是底面的内接正三角形, 为 上一点, .
(1)证明: 平面 ;
(2)求二面角 的余弦值.