盒中装有大小相等的球10个,编号分别为0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一.规定一个随机变量,并求其概率分布列.
(本小题满分12分)
已知函数f(x)=(1+x)2-ln(1+x),
(1)求f(x)的单调区间;(2)若x∈时,f(x)<m恒成立,求m的取值范围.
(本小题满分13分)
某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的
绝对值不超过5的概率。
(参考数据:,
参考公式:回归直线方程,其中
)
(本小题满分12分)
如图甲,在平面四边形ABCD中,已知,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC平面ABC;
(Ⅱ)设,求三棱锥A-BFE的体积.
(本小题满分12分)
已知向量,函数
,且
图象上一个最高点的坐标为
,与之相邻的一个最低点的坐标为
.
(1)求的解析式;
(2)在△ABC中,是角A、B、C所对的边,且满足
,求角
B的大小以及
的取值范围.
检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级.
每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格.设各教室的空气质量相互独立,且每次检测的结果也相互独立.根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为,
,
.
(1) 在该市的教室中任取一间,估计该间教室空气质量合格的概率;
(2) 如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为X,并以空气质量为A级的频率作为空气质量为A级的概率,求X的分布列及期望值.