设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=4+an1-an(n∈N*). (Ⅰ)求数列{an}与数列{bn}的通项公式; (Ⅱ)设数列{bn}的前n项和为Rn,是否存在正整数k,使得Rn>4k成立?若存在,找出一个正整数k;若不存在,请说明理由; (Ⅲ)记cn=b2n-b2n-1(n∈N*),设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn<32.
已知单调递增的等比数列满足:,且是,的等差中项。 (1)求数列的通项公式; (2)若,,求成立的正整数的最小值.
已知函数 (1)求函数的单调递增区间和对称中心。 (2)在中,角的对边分别为,若求的最小值.
已知函数 (1)若函数上为单调增函数,求a的取值范围; (2)设
已知椭圆的右焦点为,离心率为. (Ⅰ)若,求椭圆的方程; (Ⅱ)设直线与椭圆相交于两点,若,且,求的最小值.
(本小题满分10分)选修4-5:不等式选讲 设函数 (1)求不等式的解集; (2)若关于的不等式在上无解,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号