某公园举办雕塑展览吸引着四方宾客.旅游人数与人均消费
(元)的关系如下:
(1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?
(2)若公园每天运营成本为万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?
(注:旅游收入=旅游人数×人均消费)
(本小题满分12分)若实数a>0且a≠2,函数.
(1)证明函数f(x)在x=1处取得极值,并求出函数f(x)的单调区间;
(2)若在区间(0,+∞)上至少存在一点x0,使得f(x0)<1成立,求实数a的取值范围.
(本小题满分12分)已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=(an+t).
(1)若数列{bn}为等差数列,求bn;
(2)在(1)的条件下,求数列{an}的前n项和Sn.
(本小题满分12分)在△ABC中,角A,B,C所对的边依次为a,b,c,已知a=bcosC+csinB
(1)求B;
(2)若b=2,求△ABC面积的最大值.
(本小题满分12分)已知锐角△ABC中的三个内角分别为A,B,C.
(1)设,求证△ABC是等腰三角形;
(2)设向量s=(2sinC,-),t=(cos2C,2
-1),且s∥t,若sinA=
,求sin(
-B)的值.
(本小题满分10分)某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去三个不同的班级进行随班听课,要求每个班级至少有一位评估员.
(1)求甲、乙同时去班听课的概率;
(2)设随机变量为这五名评估员去
班听课的人数,求
的分布列和数学期望.