已知等差数列中,公差
,其前
项和为
,且满足
,
.
(1)求数列的通项公式;
(2)设由(
)构成的新数列为
,求证:当且仅当
时,数列
是等差数列;
(3)对于(2)中的等差数列,设
(
),数列
的前
项和为
,现有数列
,
(
),
是否存在整数,使
对一切
都成立?若存在,求出
的最小
值,若不存在,请说明理由.
(本小题满分12分)已知集合,
.
(1)在区间上任取一个实数
,求“
”的概率;
(2)设为有序实数对,其中
是从集合
中任取的一个整数,
是从集合
中任取的一个整数,求“
”的概率.
(本小题满分12分)
在△ABC中,内角A,B,C所对边长分别为,
,
,
.
(Ⅰ)求的最大值及
的取值范围;
(Ⅱ)求函数的最值.
(本小题满分12分)
设函数曲线y=f(x)通过点(0,2a+3),且
在点(-1,f(-1))处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
(本小题满分10分)
已知曲线y=在x=x0处的切线L经过点P(2,
),求切线L的方程。
(本小题满分12分)
已知双曲线过点P,它的
渐近线方程为
(1)求双曲线的标准方程;
(2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.