某商场为刺激消费,拟按以下方案进行促销:顾客每消费元便得到抽奖券一张,每张抽奖券的中奖概率为
,若中奖,商场返回顾客现金
元.某顾客现购买价格为
元的台式电脑一台,得到奖券
张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求
的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用
表示
,并求
的数学期望.
(本小题满分14分)
如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1。
将沿折起到
的位置,使平面
与平面BCFE垂直,连结A1B、A1P(如图2)。
(1)求证:PF//平面A1EB;
(2)求证:平面平面A1EB;
(3)求四棱锥A1—BPFE的体积。
(本小题满分12分)
某校一个甲类班x名学生在2011年某次数学测试中,成绩全部介于90分与140分之间,
将测试结果按如下方式分成五组,第一组;第二组
第五组
,
下表是按上述分组方法得到的频率分布表:
(1)求x及分布表中m,n,t的值;
(2)设a,b是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件“的概率。”
.(本小题满分12分)
已知向量,且
(1)求的解析式和它的最小正周期;
(2)求函数的值域。
(已知二次函数满足:对任意实数x,都有
,且当
(1,3)时,有
成立。
(1)证明:;
(2)若的表达式;
(3)在(2)的条件下,设,
,若
图上的点都位于直线
的上方,求实数m的取值范围。
(某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?