某商场为刺激消费,拟按以下方案进行促销:顾客每消费元便得到抽奖券一张,每张抽奖券的中奖概率为
,若中奖,商场返回顾客现金
元.某顾客现购买价格为
元的台式电脑一台,得到奖券
张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求
的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用
表示
,并求
的数学期望.
在平面直角坐标系中,设点
(1,0),直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ) 记的轨迹的方程为
,过点
作两条互相垂直的曲线
的弦
、
,设
、
的中点分别为
.求证:直线
必过定点
.
已知椭圆的离心率为
,F为椭圆在x轴正半轴上的焦点,M、N两点在椭圆C上,且
,定点A(-4,0).
(1)求证:当时.,
;
(2)若当时有
,求椭圆C的方程;
(3)在(2)的条件下,当M、N两点在椭圆C运动时,当的值为6
时, 求出直线MN的方程.
设直线与椭圆
相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.
(1)证明:;
(2)若的面积取得最大值时的椭圆方程.
设动点到定点
的距离比它到
轴的距离大1,记点
的轨迹为曲线
.
(1)求点的轨迹方程;
(2)设圆过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,试探究当
运动时,弦长
是否为定值?为什么?
已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线
与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:;
(Ⅱ)若的周长为6;写出椭圆C的方程.