设函数(1)求函数
; (2)若存在常数k和b,使得函数
对其定义域内的任意实数
分别满足
则称直线
的“隔离直线”.试问:函数
是否存在“隔离直线”?若存在,求出“隔离直线”方程,不存在,请说明理由.
如图所示,图象为函数的部分图象
(1)求的解析式
(2)已知且
求
的值
已知函数是首项为2,公比为
的等比数列,数列
是首项为-2,第三项为2的等差数列.
(1)求数列的通项式.
(2)求数列的前
项和
.
已知数列具有性质:①
为整数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
.
(1)若为偶数,且
成等差数列,求
的值;
(2)设(
且
N),数列
的前
项和为
,求证:
;
(3)若为正整数,求证:当
(
N)时,都有
.
已知函数.
(1)当时,判断
的奇偶性,并说明理由;
(2)当时,若
,求
的值;
(3)若,且对任何
不等式
恒成立,求实数
的取值范围.
某企业生产某种商品吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.