游客
题文

若动圆P恒过定点B(2,0),且和定圆外切.
(1)求动圆圆心P的轨迹E的方程;
(2)若过点B的直线l与曲线E交于M、N两点,试判断以MN为直径的圆与直线 是否相交,若相交,求出所截得劣弧的弧度数,若不相交,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数
(I)函数在区间上是增函数还是减函数?证明你的结论;
(II)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:

设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

已知点P(0,5)及圆C:x2+y2+4x-12y+24=0
(I)若直线l过点P且被圆C截得的线段长为4,求l的方程;
(II)求过P点的圆C的弦的中点D的轨迹方程

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且

(I)求证:EF∥平面BDC1
(II)求二面角E-BC1-D的余弦值

已知函数
(I)若,求函数的最大值和最小值,并写出相应的x的值;
(II)设的内角的对边分别为,满足,求的值

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号