在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
(本小题满分14分)
已知集合,集合
,若
,求实数
的取值范围。
已知圆过点
且与圆
:
关于直线
对称,作斜率为
的直线
与圆
交于
两点,且点
在直线
的左上方。
(1)求圆C的方程。
(2)证明:△的内切圆的圆心在定直线
上。
(3)若∠,求△
的面积。
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2
=2.
(1)求证:;
(2)求证:∥平面
;
(3)求三棱锥的体积
.
设椭圆的左,右两个焦点分别为
,短轴的上端点为
,短轴上的两个三等分点为
,且
为正方形。
(1)求椭圆的离心率;
(2)若过点作此正方形的外接圆的切线在
轴上的一个截距为
,求此椭圆方程。
已知⊙,直线
(1)求证:对,直线
与⊙
总有两个不同的交点
.
(2)求弦长的取值范围.
(3)求弦长为整数的弦共有几条.