造船厂年造船量20艘,造船艘产值函数为
(单位:万元),成本函数
(单位:万元),又在经济学中,函数
的边际函数
定义为
(1)求利润函数及边际利润函数
(利润=产值—成本)
(2)问年造船量安排多少艘时,公司造船利润最大
(3)边际利润函数的单调递减区间
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组
,,第五组
.按上述分组方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
命题: “方程
表示双曲线”(
);命题
:
定义域为
,若命题
为真命题,
为假命题,求实数
的取值范围.
已知函数,(
为常数,
为自然对数的底).
(1)令,
,求
和
;
(2)若函数在
时取得极小值,试确定
的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为
,试判断曲线
只可能与直线
、
(
,
为确定的常数)中的哪一条相切,并说明理由.
已知椭圆G:过点
,
,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
(1)试用半径表示出储油灌的容积
,并写出
的范围.
(2)当圆柱高与半径
的比为多少时,储油灌的容积
最大?